Lower and upper orientable strong radius and strong diameter of complete k-partite graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orientable Strong Radius and Diameter of Hypercube

For two vertices u, v in a strong digraph D, the strong distance sd(u, v) between u and v is the minimum size of a strong subdigraph of D containing u and v. The upper (lower) orientable strong radius SRAD(G) of a graph G is the maximum (minimum) strong radius over all strong orientations of G. The upper (lower) orientable strong diameter SDIAM(G) of a graph G is the maximum (minimum) strong di...

متن کامل

Orientable Step Domination of Complete r-Partite Graphs

This paper provides lower orientable k-step domination number and upper orientable k-step domination number of complete r-partite graph for 1 ≤ k ≤ 2. It also proves that the intermediate value theorem holds for the complete r-partite graphs.

متن کامل

Spanners of Complete k -Partite Geometric Graphs

We address the following problem: Given a complete k-partite geometric graph K whose vertex set is a set of n points in R, compute a spanner of K that has a “small” stretch factor and “few” edges. We present two algorithms for this problem. The first algorithm computes a (5 + )-spanner of K with O(n) edges in O(n log n) time. The second algorithm computes a (3 + )-spanner of K with O(n log n) e...

متن کامل

Strong Alliances in Graphs

For any simple connected graph $G=(V,E)$, a defensive alliance is a subset $S$ of $V$ satisfying the condition that every vertex $vin S$ has at most one more neighbour in $V-S$ than it has in $S$. The minimum cardinality of any defensive alliance in $G$ is called the alliance number of $G$, denoted $a(G)$. In this paper, we introduce a new type of alliance number called $k$-strong alliance numb...

متن کامل

a generalization of strong causality

در این رساله t_n - علیت قوی تعریف می شود. این رده ها در جدول علیت فضا- زمان بین علیت پایدار و علیت قوی قرار دارند. یک قضیه برای رده بندی آنها ثابت می شود و t_n- علیت قوی با رده های علی کارتر مقایسه می شود. همچنین ثابت می شود که علیت فشرده پایدار از t_n - علیت قوی نتیجه می شود. بعلاوه به بررسی رابطه نظریه دامنه ها با نسبیت عام می پردازیم و ثابت می کنیم که نوع خاصی از فضا- زمان های علی پایدار, ب...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2006

ISSN: 0166-218X

DOI: 10.1016/j.dam.2006.01.010